Close
The Stern-Gerlach Experiment – A history of stubbornness

The Stern-Gerlach Experiment – A history of stubbornness

Even scientists are only human. That’s why success stories often read like a comic book: great heroes fighting for the good of humanity. From another perspective, however, it sometimes seems more like the nagging of old white men arguing over who is right. We have already seen a few examples of this: Boltzmann and Planck fighting over entropy, Thomson and Rutherford decoding the atom, Newton and the rest of the world racking their brains over the nature of light. And the Stern-Gerlach experiment, which celebrated its hundredth anniversary this month and which is a milestone of quantum physics, was ultimately the invention of a scientist who desperately wanted to be right.

Schrödinger’s Tardigrade

Schrödinger’s Tardigrade

Polar ice, the moon, the quantum world – what do these places have in common? There is no Wi-Fi? Possibly. It’s uncomfortable? Probably. They are uninhabited? Not at all! All these places have (allegedly) already been seen by a certain living being. Sometimes by choice, sometimes by design, sometimes by accident. What kind of creature is it that hangs around in such exotic, hostile places? It is small, chubby and it’s name: Tardigrade! In 2014, tardigrades were found in the Arctic that had been “hibernating” for over 30 years. Since a crash landing of an Israeli space probe in 2019, a few tardigrades have been lying on the moon. And according to a group of researchers, tardigrades have now also made the leap into the quantum world! But is that really true?

Superluminal Elf Radio

Superluminal Elf Radio

Santa’s gift tour is a headache for children every year: How does he manage to visit every child in the world in a single night? But Santa’s travel speed is not the only problem. I wonder: how does he know if the child whose chimney, balcony or front door he is standing in front of has been naughty or nice? Does he carry around the naughty-nice-list in paper form? Is he in radio contact with the North Pole? Or does he have a completely different method? We will ask the question: Is communication faster than the speed of light possible?

FAQ: Quantum Computer

FAQ: Quantum Computer

Everyone is talking about quantum computers. Do you sometimes feel like you’ve missed the boat and no longer dare to ask how a quantum computer actually works and what it’s supposed to be good for? Then my blog series “FAQ: Quantum Computer” is for you! Many news articles on quantum computing do not (or no longer) go into sufficient detail about the new quantum machines, which quickly leads to misunderstandings and confusion.
I have gone into the details of the “miracle machines” in three articles. Here you will find an overview of the questions I have tried to answer – including a short version of the answer.

FAQ: Quantum Computer – From classical to quantum computer

FAQ: Quantum Computer – From classical to quantum computer

The quantum computer as the holy grail: with it everything will be better, everything will be faster, unsolvable problems will become child’s play, banks beware – your encryption is finished! Is that really the case? In what are quantum computers really better than classical computers and in what are they perhaps not? In my series “FAQ: Quantum Computers” series, I try to clear up common misconceptions and erase question marks. This is the last part of the series and it’s about the differences between classical and quantum computers.

FAQ: Quantum Computer – From Qubit to Quantum Computer

FAQ: Quantum Computer – From Qubit to Quantum Computer

Many articles on quantum computing are rushing quite a lot. “A qubit can be in the states 0 and 1 at the same time, and that’s why quantum computers are better than classical ones.” Sure…? Um, no, that was a bit too quick. In my series “FAQ: Quantum computer” I try to clear up common misconceptions and erase question marks. This article is about how to make a quantum computer out of many qubits.

FAQ: Quantum Computer – From Bit to Qubit

FAQ: Quantum Computer – From Bit to Qubit

Quantum computers bring quantum physics into the spotlight. Because tech giants as Google, IBM, Microsoft, and Amazon are all over them, they are the talk of the town. In addition to scientific journals, daily newspapers and gossip magazines also report on qubits and their friends. Quantum computers are always explained “simply and compactly”. I could also write an article like this, but more specifically, I would like to address the misunderstandings and confusion that such articles often cause. This is not (necessarily) the fault of the authors because no one can adequately explain quantum physics in 5000 characters. Others, however, blatantly sell the quantum computer as a holy grail or Pandora’s box. As so often, the truth lies somewhere in the between.

Quantum technology 2.0

Quantum technology 2.0

When you think of quantum technology, you think of quantum computers. Or science fiction, light sabres and half-dead cats. But quantum technology is more than the chase for the quantum computer. The second quantum revolution is about breaking boundaries and taming nature’s smallest building blocks. What emerges is a superlative technology: smaller, faster, safer, more precise. And not to forget: more incomprehensible.

Quantum technology 1.0

Quantum technology 1.0

Quantum technology is on everyone’s lips. Boulevard newspapers report on quantum computers under the factual title “Computers will dominate mankind!” In most cases, quantum technology is presented mysteriously, as a product of the future: science fiction. But one point most articles keep quiet about: Quantum technology already exists and we all have it at home.

The identity crisis of light

The identity crisis of light

Sometimes you have to make a choice. Some things you hate, for example, or you love them. Like Brussels sprouts, marzipan or Big Brother. In other cases, you have to take sides: Cats or dogs, Edward or Jacob, wave or particle. But as unlikely as it may sound, sometimes you can be two things at once. Although when this happens in the very foundations of physics, it can start heated discussions. Like at the beginning of the 20th century when Albert Einstein threw light into a deep identity crisis: wave or particle, which is it?